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Abstract

Purpose — The purpose of this paper is to propose a non-polynomial spline-based method to obtain
numerical solutions of a dissipative wave equation. Applying the Von Neumann stability analysis, the
developed method is shown to be conditionally stable for given values of specified parameters. A
numerical example is given to illustrate the applicability and the accuracy of the proposed method.
The obtained numerical results reveal that our proposed method maintains good accuracy.
Design/methodology/approach — A non-polynomial spline is proposed based on the dissipative
wave equation, which gives nonlinear system of algebraic equations; by solving these equations, the
numerical solution is found.

Findings — It is found that the method gives more accurate numerical results for such nonlinear
partial differential equations. The stability is good.

Research limitations/implications — Any nonlinear or linear partial differential equation can be
solved by such method.

Practical implications — We compare between the numerical and analytic solutions of the
dissipative wave equation, also the error norms which were small.

Originality/value — This paper presents a new method to solve such problems.

Keywords Differential equations, Numerical analysis, Polynomials, Stability (control theory)

Paper type Research paper

1. Introduction
In this paper we propose a non-polynomial spline-based method to obtain numerical
solutions of the dissipative wave equation of the form (Adomian, 1994):

% - % + 2upu = g(x,1) (1)
subject to the conditions:
ula,t) =m, u(b,t)=m, =0 (2)
and:
u(x,0) = fi(x), ur(x,0) =fox) a<x<b (3)

Recently, there is a wide use to the non-polynomial spline-based methods for
approximating the solution of boundary value problems of different orders (see for
example Daele et al., 1994; Islam et al., 2005; Ramadan et al., 2007, 2008). However, the
numerical analysis literature contains little for using these non-polynomial splines

The authors would like to thank the referees for their very constructive comments and
suggestions.



dealing with numerical solutions of partial differential equations (El-Danaf and Abd Non- polyn0m1al

Alaal, 2006; Rahidinia, 2007; Ramadan et al., 2007).

The spline functions proposed have the form 735 = span{l,x,sin wx, cos wx}
where w is the frequency of the trigonometric part of the spline functions which will be
used to raise the accuracy of the method.

This paper is organized as follows: In section 2, a new method depends on the use
of the non-polynomial splines is derived. In section 3, the stability analysis is
theoretically discussed. Using Von Neumann method, for given values of specified
parameters, the proposed method is shown to be conditionally stable. Finally, in
section 4 a numerical example is included to illustrate the practical implementation of
the proposed method.

2. Derivation of the numerical method
To set up the non-polynomial spline method, select an integer N > 0 and time-step size
k>0.Withh = 11\7% , the mesh points (x;, ¢;) are:
x;=a-+1th,foreachi=0,1,...,N+1,
and,
t; =jk, foreachj =0,1,...
Let Z] Z(x;,t;) be an approx1mat10n to u(x;,t;), obtained by the segment P (x,8) of

]
the mixed sphne function passing through the points (x;,Z!) and (x;41, 7 '.1)- Each
segment has the form:

Pi(x,8) = a;j(f) cosw(x —x;) + b:(f) sin w(x —x;) +ci(ty) (x — ;) +di(4)  (4)
Foreachi =0,1,...,N we define:

Pi(xi,t)) = Z, Pilaiaa, ) = ZLy, P70 ) = S, and

PP (xi1,8) = S,

i+l

where P (5,4 Pi(x;, t
Usmg Equatlons (9 )3 and (5 We obtain expressions for the coefficients of (4) in terms
of 2,7 ,,S,and S, a

1 Zi41 Y
a+d =7,
a; cos 0+ b; sin O+ c;h +d; = Zl]+1
s (6)
—aw _Si

—aw’ cos 0 — bjw’ sin 0 = Sia

where a; = a;(%), b; = b;(t), ¢ = ¢i(t), di = di(¢;),and 6 = wh.
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Solving the last four equations, we obtain the following expressions:

L g, Peos 08 -8 (Za-Z) WS, —S)
! gz ! #% sinf . h 62 (7)
w” o .

2.1 Spline relations
Using the continuity condition of the first derivative at x = x;, that is Pl-(1> (x5, 8) =

Pl(i)l (x;,t;), we obtain:

bw +¢; = —a;_qw sin 0 + b;_qw cos 0 + ¢;_1 (8)

Using equation (7), equation (8) becomes:

62 sin 6 h 62
JPw(cos 0S| — S)) Z-Z) S-S,
@sno 0T T @

Wulcos S~ 8.,) (B ~7) WS~ S)

RPw . .
= 9—515571 sin 6 +

After slight rearrangements, the last equation reduces to:

Zf+1—2Zf+Z{,1=aS{+1+BS{+aS§71, i=12 ..., N. (9)
n? n? 21k cos 0 242
whereo =g @ = " T

2 4 2
Remark. As w — 0, thatis @ — 0,then (o, 8) — (h— , —h> , and system (9) reduces
to ordinary cubic spline: 66

. . 2
247, =S

7]
Z; i+1

7 +4S/+S.), i=1,2,..,N.

Using differential equation (1), we can write Sij in the form:

Vi
S o

v (v
LToox

iz 00

i oz
where &, = 2.



Using Equation (10), S/ H,S{ ,and 55:71 can be discretized as follows: Non-polynomial
spline method

o= (BZ R 2 o)
S = (Zgl - 25 R gf) (1) 953
S, = (szll - Ziél 25 + 812 - gz'j1>
Inserting forms in (11) for S{;PS{' ,and Szjq into Equation (9), we obtain:
R S T TN
+ﬂ<Zgl_2kZ2{+Z{H+6fZ{—gZ’:> (12)
ta (Zl]ﬂl — Zi]iz'ﬂ h Zl]ill + §§+1sz+1 - g5+1>

After simple calculations, the above equation becomes:

OZl + PZ + ol = (# + 20— ok*8_)Z]
+ (=21 + 28 - pK*6)Z!

S A . (13)
+ (K + 20— akzégﬂ)ZfH - aijll - ﬁZfl
—oZll+ X, i=12,...,N.

. . . . . o7 i_pi-1
where X, = K (agl | + 8¢ + ag] .p)and 8 =2 %Z; ~ % System (13) consists of

N equations in the N + 2 unknowns Z;, i =0,...,N + 1. To get a solution to this
system we need two additional equations. These equations are obtained from the
boundary conditions in (2). The two parts in (2) are replaced by:

7 =
o (14)
Zyq=m, j=01,...
Writing Equations (13) and (14) in matrix form gives:
AZFY=BZ —CZ7 +v (15)

where,



HFF
19,8

954

1 0 0 0o 0 0 O
a [ a 0 0 0 O 0
0 a B a 0 0 0
0

A=|... s
0 0
0 0 0 0 a B a 0
0 0O 0 0 0 a A a
0 .. 0 0 0 0 0 0 1|
0 0 0 0 0 0 0 0
A B G 0 0 0 0 0
0 Ay By, G 0 0 0 0
0

B=|... L,
0 0
0 0 0 0 Ay_1 By_1 Cv1 O
0 0O 0 O 0 An By Cy
0 o 0 0 0 0 0 0,
fo 0 O O 0 0 O 0
a B o 0 0 0 O 0
0 aa B a 0 0 0 0
0

C=1... o,
0 0
0 0O 0 0 a B o O
0 0 0 0 0 a B a
0 0O 0 0 0 0 0 0]

7= (1, M, A2y A7)

and A = +2a —Fab) |

B = -2k + 28— FB8,
C =k +2a—Fad,

i+1

Equations (13) and (14) imply that the (7 + 1)th time-step requires values from the
(pth and (7 — 1)th time steps. This produces a minor starting problem since values
for j = O are given by the first part in Equation (3):

lezu(x,',()) :fl(xl-), i=1,...,N. (16)



but values for j = 1, which are needed in Equation (15) to compute ZZ-Z, must be
obtained from the second part in (3):
oz?
ot

=wu(%;,0) = fox;), ¢=1,...,N.

One approach is to replace 822-0 /Ot by a forward-difference approximation:

07 _7 -7
Sa(xi) = otk +o(k) (17)
which gives us:
Z}%Zlo+kf2(xl‘), i=1,...,N. (18)

The last result gives an approximation that has local truncation error of only O (k). A
better approximation to ZZ-1 can be obtained rather easily, particularly when the second
derivative of u(x,0) = f; at x; can be determined. Using the Taylor polynomial up to
the first two terms in ¢ for Zat (x;, 0) we can write:

4 -7 _ o7 hoz
ot 208

+ o(k%) (19)

Suppose Equation (1) holds on the initial line; that is:

Pu u

W(xho)*w(

If fl(z) exists, then:

%;,0) + 20 (x;,0)u(%;,0) = g(x;,0), foreachi=0,1,...N +1.

Pz} u o Ou o &*h
o — g Wi 0)=8i + 55 (4, 0) = 2u(x;, 0)u(x;, 0) =g; + 5

(x:) — 2f2(x:)f1 (%),

Substituting into Equation (19) and solving for Zi1 gives:

1. 0 ' #2 0 da*h ‘ .
Zz' NZi +kf2(x,)+§ gl»—i—W(xl)—ngfl , 1=1,...,N. (20)

This is an approximation with local truncation error of O(t?).

3. The stability analysis

To investigate stability of the scheme, we apply the Von Neumann method after
linearizing the nonlinear difference equation (13) by taking 6,1, ¢;, and 6;_; as a local
constant d*. According to the Von Neumann method we have:

Zl = J exp(qypih), (21)

where ¢ is the wave number, ¢ = v/ —1, / is the element size, and ( is the amplification
factor. The use of Equations (21) and (13) gives us the characteristic equation in the form

Non-polynomial
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¢ exp((i — 1)gh) + B expligiph) + o exp((i + 1)gph)} =

¢ (R + 2a — ok*d") exp((i — 1)qph) + (—2F* + 26 — Bk*d") exp(igoh)+ |
(7 + 20 — al?d") exp((i + 1)qeoh)

¢ Mo exp((i — 1)gph) + 3 expligeh) + o exp((i + 1)gph)}
Dividing both sides of the last equation by exp(igph) we obtain:
¢ a exp(—qph) + B+ a exp(qph)} =

o (R? 4 2ac — akPd*) exp(—qiph) + (—2k + 28 — Bkd*)+ B
(R? + 200 — ak?d*) exp(qiph)

Cj‘l{a exp(—qph) + 5+ « exp(qph)}

(22)

After canceling the common term, that is ¢~ a exp(—qph) + 3 + a exp(qph)},
Equation (22) becomes:

Gt 2u+1=0 (23)
where
(ak’d* — k) exp(—qo)+ (B2 + 2 )+ (akPd* — K?) exp(qop)
2(ov exp(—q¢) + B+ o exp(qo))

or  2(akPd" — ) cos ¢ + (Fd" + 21%)
r= 2(2a cos ¢+ 3)

—1, and ¢ = ©h

~1 (24)

Equation (23) is a quadratic in ¢ and hence will have two roots, that is
C+ = —p & /2 — 1. For stability, we must have |(4| < 1. Also from Equation (23) we
can observe that the product of the two values of  is clearly unity. So three cases arise.

Case 1: Both the roots are equal to unity. In that case the discriminant of the
quadratic equation (23) is zero.

Case 2: One of the roots is greater than unity. In that case the discriminant is greater
than zero. This means that stability condition, that is [(+| < 1, is not satisfied. In other
words, ¢ would grow in an unbounded manner.

Case 3: Discriminant is less than zero, that is: ? — 1 < 0.

Thus, for stability:

“1<pu<1 (25)

Using Equation (24), the above inequality becomes:

d* k(1 - cos ¢) k2d*
e KRS 9) o

2 T (B+2acos @) T 2

2 1% 2 .2 2 1%

_kd < 2k Sln(gb(ZZ) SZ—kd

2 7 (B+2a) —4a sin®(¢/2) 2

(26)



Two cases will be discussed:
Case 1: For 8 = —2a, inequality (26) becomes:

Rds R kd*
_ < <9
2 —2a ~ 2 2 27)
The right inequality in (27) which can be written in the form:
i k2
<9
—5a < 2 5 (28)

is satisfied for o < 0, k* < |, and k? small enough to make:

k2d* k2
(2— 2)—>231’1d0<_—2a<<1

but the left inequality, that is (—d*/2) < (1/—2«), is valid for |«| small enough and
a <0 to make (1/—2a) > 0. Finally, we can say that our system is stable for
B = —2a,a <0, and k* < |a| such that ||, and k? are small enough.

Case 2: For a > 0, 3 > 2¢, the quantity (8 + 2a) — 4« sinz(qb /2) is positive, so the
right inequality in (26) which can be written in the form:

21 sin’(¢/2) < (2 - kzd*) (8 + 2a — 4o sin?(¢/2)) (29)

2

is satisfied for a>0,8>0,3> 2a, and?> <« 3 small enough to make

(2— (K*d"/2)) — 2and 2/ sin®(¢/2) — 0, but the left inequality, that is:
4 sin®(¢/2)

T (B + 20) — 4o sin®(¢/2)

*

(30)

is valid for o > 0,3 > 0, and 8 > 2« such that «, and 8 are small enough and sin
(¢/2) #0. Finally, we can say that stability in this case requires « > 0,
B> 0, and 8 > 2a such that o, Band > << (3 are small enough and sin($/2) # 0.

4. Numerical results
We now obtain the numerical solution of dissipative wave equation for one standard
problem. The accuracy of our proposed numerical method is measured by computing
the difference between the analytic and numerical solutions at each mesh point and use
these to compute the maximum absolute error, L., — error norm.
Example. Consider the dissipative wave equation (Adomian, 1994):
Pu Pu

W—@—&—Z@ttu:—ZSinzxsintcost()gxgw, t>0 (31)

with the initial conditions:
u(x,0) =sin x u(x,0) =0, (32)

and the boundary conditions:
u(0,t) = wu(mt) =0, (33)
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The exact solution of this problem is:

19,8 u(x,t) = sin x cos ¢ (34)
From the obtained numerical results in Tables I-V, we can conclude that applying non-
polynomial splines in the solution of partial differential equations is a promising

958 approach
Time 0.500 1.500 3.000
Lo — error 255058 x 107 176001 x 107 3.21326 x 107° 4.25842 x 107

Table 1. Notes: = 7/40; k=0.01; « = —1.01; 8 = —2«

Time 0.500 1.500 3.000
Lo — error 252751 x 107 1.73065 x 107 431818 x 107 49997 x 107

Table II. Notes: 1 = 7/40; k= 0.01; « = 1075, 4 = 6.21 x 1073
Time 0.500 1.500 3.000
Lo — ervor 490515 x 107° 275733 x 1074 6.19493 x 107* 759812 x 1074

Table III. Notes: i = w/40; k= 0.0025 « =2 x 1077; 3 =6.18 x 10~3
X Exact solution Numerical solution
0.2m 0.04157828392871431 0.041764024258423134
0.3m 0.05722759828369953 0.057475017088467340
0.4mr 0.06727507659055325 0.067547692975227380
0.57 0.07073720166770290 0.071012934346015150
0.6m 0.06727507659055325 0.067547692975153300
0.7m 0.05722759828369953 0.057475017088395690
0.87 0.04157828392871431 0.041764024258327160

Table IV. Notes: 1 = 7/40; t =1.5;a =2x1077; 3 =6.18 x 1073
X Exact solution Numerical solution
0.27 —0.47090040218675855 —0.47064203333751690
0.31 —0.64813879991245870 —0.64771280914059780
0.47m —0.76193285605417060 —0.76136720198110770
0.57 —0.80114361554693370 —0.80052412271783310
0.6m —0.76193285605417060 —0.76136720198119200
0.7m —0.64813879991245870 —0.64771280914063270
0.87 —0.47090040218675855 —0.47064203333747706

Table V. Notes: 1 = w/40; t = 2.5« =2x 1077, § =6.18 x 103




5. Conclusion

In this paper a numerical treatment for a dissipative wave equation using non-
polynomial spline is proposed. Applying the Von Neumann stability analysis, the
developed method is shown to be conditionally stable for given values of specified
parameters. The obtained numerical results show that our proposed method maintains
good accuracy.
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