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Abstract

Purpose – The purpose of this paper is to propose a non-polynomial spline-based method to obtain
numerical solutions of a dissipative wave equation. Applying the Von Neumann stability analysis, the
developed method is shown to be conditionally stable for given values of specified parameters. A
numerical example is given to illustrate the applicability and the accuracy of the proposed method.
The obtained numerical results reveal that our proposed method maintains good accuracy.
Design/methodology/approach – A non-polynomial spline is proposed based on the dissipative
wave equation, which gives nonlinear system of algebraic equations; by solving these equations, the
numerical solution is found.
Findings – It is found that the method gives more accurate numerical results for such nonlinear
partial differential equations. The stability is good.
Research limitations/implications – Any nonlinear or linear partial differential equation can be
solved by such method.
Practical implications – We compare between the numerical and analytic solutions of the
dissipative wave equation, also the error norms which were small.
Originality/value – This paper presents a new method to solve such problems.

Keywords Differential equations, Numerical analysis, Polynomials, Stability (control theory)

Paper type Research paper

1. Introduction
In this paper we propose a non-polynomial spline-based method to obtain numerical
solutions of the dissipative wave equation of the form (Adomian, 1994):

@2u

@t2
� @

2u

@x2
þ 2utu ¼ gðx; tÞ ð1Þ

subject to the conditions:

uða; tÞ ¼ �1; uðb; tÞ ¼ �2; t � 0 ð2Þ

and:

uðx; 0Þ ¼ f1ðxÞ; utðx; 0Þ ¼ f2ðxÞ a � x � b ð3Þ

Recently, there is a wide use to the non-polynomial spline-based methods for
approximating the solution of boundary value problems of different orders (see for
example Daele et al., 1994; Islam et al., 2005; Ramadan et al., 2007, 2008). However, the
numerical analysis literature contains little for using these non-polynomial splines
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dealing with numerical solutions of partial differential equations (El-Danaf and Abd
Alaal, 2006; Rahidinia, 2007; Ramadan et al., 2007).

The spline functions proposed have the form T3 ¼ spanf1; x; sin !x; cos !xg
where ! is the frequency of the trigonometric part of the spline functions which will be
used to raise the accuracy of the method.

This paper is organized as follows: In section 2, a new method depends on the use
of the non-polynomial splines is derived. In section 3, the stability analysis is
theoretically discussed. Using Von Neumann method, for given values of specified
parameters, the proposed method is shown to be conditionally stable. Finally, in
section 4 a numerical example is included to illustrate the practical implementation of
the proposed method.

2. Derivation of the numerical method
To set up the non-polynomial spline method, select an integer N > 0 and time-step size
k > 0:With h ¼ b�a

Nþ1 ; the mesh points ðxi; tjÞ are:

xi ¼ aþ ih; for each i ¼ 0; 1; . . . ;N þ 1;

and,

tj ¼ jk; for each j ¼ 0; 1; . . .

Let Zj
i � Zðxi; tjÞ be an approximation to uðxi; tjÞ; obtained by the segment Piðx; tjÞ of

the mixed spline function passing through the points ðxi; Z
j
i Þ and ðxiþ1; Z

j
iþ1Þ. Each

segment has the form:

Piðx; tjÞ ¼ aiðtjÞ cos!ðx� xiÞ þ biðtjÞ sin !ðx� xiÞ þ ciðtjÞ ðx� xiÞ þ diðtjÞ ð4Þ

For each i ¼ 0; 1; . . . ;N we define:

Piðxi; tjÞ ¼ Zj
i ; Piðxiþ1; tjÞ ¼ Zj

iþ1; P
ð2Þ
i ðxi; tjÞ ¼ Sj

i ; and

P
ð2Þ
i ðxiþ1; tjÞ ¼ Sj

iþ1;
ð5Þ

where P
ð2Þ
i ðxi; tjÞ � @2

@x2 Piðxi; tjÞ.
Using Equations (4) and (5), we obtain expressions for the coefficients of (4) in terms

of Zj
i , Zj

iþ1, Sj
i , and Sjþ1

i as:

ai þ di ¼ Zj
i ;

ai cos �þ bi sin �þ cihþ di ¼ Zj
iþ1

�ai!
2 ¼ Sj

i

�ai!
2 cos �� bi!

2 sin � ¼ Sj
iþ1

ð6Þ

where ai � aiðtjÞ; bi � biðtjÞ; ci � ciðtjÞ; di � diðtjÞ, and � ¼ !h:
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Solving the last four equations, we obtain the following expressions:

ai ¼ �
h2

�2
Sj

i ; bi ¼
h2ðcos � Sj

i � Sj
iþ1Þ

�2 sin �
; ci ¼

ðZj
iþ1 � Zj

i Þ
h

þ
hðSj

iþ1 � Sj
iÞ

�2

di ¼
h2

�2
Sj

i þ Zj
i ;

ð7Þ

2.1 Spline relations

Using the continuity condition of the first derivative at x ¼ xi , that is P
ð1Þ
i ðxi; tjÞ ¼

P
ð1Þ
i�1ðxi; tjÞ, we obtain:

bi!þ ci ¼ �ai�1! sin �þ bi�1! cos �þ ci�1 ð8Þ

Using equation (7), equation (8) becomes:

h2!ðcos �Sj
i � Sj

iþ1Þ
�2 sin �

þ
ðZj

iþ1 � Zj
i Þ

h
þ

hðSj
iþ1 � Sj

iÞ
�2

¼

¼ h2!

�2
Sj

i�1 sin �þ
h2!ðcos � Sj

i�1 � Sj
iÞ

�2 sin �
cos �þ

ðZj
i � Zj

i�1Þ
h

þ
hðSj

i � Sj
i�1Þ

�2

After slight rearrangements, the last equation reduces to:

Zj
iþ1 � 2Zj

i þ Zj
i�1 ¼ �Sj

iþ1 þ �Sj
i þ �Sj

i�1; i ¼ 1; 2; . . . ; N : ð9Þ

where � ¼ h2

� sin �
� h2

�2
; and � ¼ � 2 h2 cos �

� sin �
þ 2 h2

�2
.

Remark. As !! 0; that is �! 0;then ð�; �Þ ! h2

6
;
4 h2

6

� �
; and system (9) reduces

to ordinary cubic spline:

Zj
iþ1 � 2Zj

i þ Zj
i�1 ¼

h2

6
ðSj

iþ1 þ 4Sj
i þ Sj

i�1Þ; i ¼ 1; 2; :::;N :

Using differential equation (1), we can write S j
i in the form:

Sj
i ¼

@2Zj
i

@x2
¼

@2Zj
i

@t2
þ �j

iZ
j
i � g j

i

 !
ð10Þ

where �j
i ¼ 2

@Zj

i

@t
.
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Using Equation (10), Sj
iþ1,Sj

i , and Sj
i�1 can be discretized as follows:

Sj
iþ1 ¼

Zj�1
iþ1 � 2Zj

iþ1 þ Zjþ1
iþ1

k2
þ �j

iþ1Zj
iþ1 � gj

iþ1

 !

Sj
i ¼

Zj�1
i � 2Zj

i þ Zjþ1
i

k2
þ �j

iZ
j
i � gj

i

 !

Sj
i�1 ¼

Zj�1
i�1 � 2Zj

i�1 þ Zjþ1
i�1

k2
þ �j

i�1Zj
i�1 � g j

i�1

 !
ð11Þ

Inserting forms in (11) for S j
iþ1,S

j
i , and S j

i�1 into Equation (9), we obtain:

Zj
iþ1 � 2Zj

i þ Zj
i�1 ¼ �

Zj�1
i�1 � 2Zj

i�1 þ Zjþ1
i�1

k2
þ �j

i�1Zj
i�1 � gj

i�1

 !

þ �
Zj�1

i � 2Zj
i þ Zjþ1

i

k2
þ �j

iZ
j
i � gj

i

 !

þ �
Zj�1

iþ1 � 2Zj
iþ1 þ Zjþ1

iþ1

k2
þ �j

iþ1Z
j
iþ1 � gj

iþ1

 !
ð12Þ

After simple calculations, the above equation becomes:

�Zjþ1
i�1 þ �Zjþ1

i þ �Zjþ1
iþ1 ¼ ðk

2 þ 2�� �k2�j
i�1ÞZ

j
i�1

þ ð�2 k2 þ 2� � �k2�j
iÞZ

j
i

þ ðk2 þ 2�� �k2�j
iþ1ÞZ

j
iþ1 � �Zj�1

i�1 � �Zj�1
i

� �Zj�1
iþ1 þ �

j
i; i ¼ 1; 2; . . . ;N :

ð13Þ

where �j
i ¼ k2ð�gj

i�1 þ �gj
i þ �gj

iþ1Þ and � j
i ¼ 2

@Zj

i

@t
� 2ðZ j

i
�Z j�1

i
Þ

k
. System (13) consists of

N equations in the N þ 2 unknowns Zi; i ¼ 0; . . . ;N þ 1: To get a solution to this

system we need two additional equations. These equations are obtained from the

boundary conditions in (2). The two parts in (2) are replaced by:

Zj
0 ¼ �1

Zj
Nþ1 ¼ �2; j ¼ 0; 1; . . .

ð14Þ

Writing Equations (13) and (14) in matrix form gives:

A Zjþ1 ¼ B Zj � C Zj�1 þ r ð15Þ

where,
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A ¼

1 0 0 0 0 0 0 . . . 0

� � � 0 0 0 0 . . . 0

0 � � � 0 0 0 . . . 0

0 . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0 0

0 . . . 0 0 0 � � � 0

0 . . . 0 0 0 0 � � �

0 . . . 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

;

B ¼

0 0 0 0 0 0 0 . . . 0

A1 B1 C1 0 0 0 0 . . . 0

0 A2 B2 C2 0 0 0 . . . 0

0 . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0 0

0 . . . 0 0 0 AN�1 BN�1 CN�1 0

0 . . . 0 0 0 0 AN BN CN

0 . . . 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

;

C ¼

0 0 0 0 0 0 0 . . . 0

� � � 0 0 0 0 . . . 0

0 � � � 0 0 0 . . . 0

0 . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0 0

0 . . . 0 0 0 � � � 0

0 . . . 0 0 0 0 � � �

0 . . . 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

;

r ¼ ð�1; �1; �2; . . . ; �N ; �2ÞT

and Ai ¼ k2 þ 2�� k2��j
i�1

Bi ¼ �2 k2 þ 2� � k2��j
i

Ci ¼ k2 þ 2�� k2��j
iþ1

Equations (13) and (14) imply that the ( j þ 1)th time-step requires values from the
( j)th and ( j � 1)th time steps. This produces a minor starting problem since values
for j ¼ 0 are given by the first part in Equation (3):

Z 0
i ¼ uðxi; 0Þ ¼ f1ðxiÞ; i ¼ 1; . . . ;N : ð16Þ
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but values for j ¼ 1, which are needed in Equation (15) to compute Z 2
i , must be

obtained from the second part in (3):

@Z 0
i

@t
¼ utðxi; 0Þ ¼ f2ðxiÞ; i ¼ 1; . . . ;N :

One approach is to replace @Z 0
i =@t by a forward-difference approximation:

f2ðxiÞ ¼
@Z 0

i

@t
¼ Z 1

i � Z 0
i

k
þ oðkÞ ð17Þ

which gives us:

Z 1
i � Z 0

i þ kf2ðxiÞ; i ¼ 1; . . . ;N : ð18Þ

The last result gives an approximation that has local truncation error of only O (k). A
better approximation to Z 1

i can be obtained rather easily, particularly when the second
derivative of uðx; 0Þ ¼ f1 at xi can be determined. Using the Taylor polynomial up to
the first two terms in t for Z at ðxi; 0Þwe can write:

Z 1
i � Z 0

i

k
¼ @Z 0

i

@t
þ k

2

@2Z 0
i

@t2
þ oðk2Þ ð19Þ

Suppose Equation (1) holds on the initial line; that is:

@2u

@t2
ðxi; 0Þ �

@2u

@x2
ðxi; 0Þ þ 2utðxi; 0Þuðxi; 0Þ ¼ gðxi; 0Þ; for each i ¼ 0; 1; . . . N þ 1:

If f
ð2Þ
1 exists, then:

@2Z 0
i

@t2
¼@

2u

@t2
ðxi; 0Þ¼g0

i þ
@2u

@x2
ðxi; 0Þ � 2utðxi; 0Þuðxi; 0Þ¼g0

i þ
d2f1

dx2
ðxiÞ � 2f2ðxiÞf1ðxiÞ;

Substituting into Equation (19) and solving for Z 1
i gives:

Z 1
i � Z 0

i þ kf2ðxiÞ þ
k2

2
g0

i þ
d2f1

dx2
ðxiÞ � 2f2f1

� �
; i ¼ 1; . . . ;N : ð20Þ

This is an approximation with local truncation error of O(k2).

3. The stability analysis
To investigate stability of the scheme, we apply the Von Neumann method after
linearizing the nonlinear difference equation (13) by taking �iþ1; �i; and �i�1 as a local
constant d�. According to the Von Neumann method we have:

Zj
i ¼ �

j expðq’ihÞ; ð21Þ

where ’ is the wave number, q ¼
ffiffiffiffiffiffi
�1
p

, h is the element size, and � is the amplification
factor. The use of Equations (21) and (13) gives us the characteristic equation in the form
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�jþ1f� expðði � 1Þq’hÞ þ � expðiq’hÞ þ � expðði þ 1Þq’hÞg ¼

�j ðk2 þ 2�� �k2d�Þ expðði � 1Þq’hÞ þ ð�2 k2 þ 2� � �k2d�Þ expðiq’hÞþ
ðk2 þ 2�� �k2d�Þ expðði þ 1Þq’hÞ

( )
�

�j�1f� expðði � 1Þq’hÞ þ � expðiq’hÞ þ � expðði þ 1Þq’hÞg

Dividing both sides of the last equation by expðiq’hÞwe obtain:

�jþ1f� expð�q’hÞ þ � þ � expðq’hÞg ¼

�j ðk2 þ 2�� �k2d�Þ expð�q’hÞ þ ð�2 k2 þ 2� � �k2d�Þþ
ðk2 þ 2�� �k2d�Þ expðq’hÞ

( )
�

�j�1f� expð�q’hÞ þ � þ � expðq’hÞg

ð22Þ

After canceling the common term, that is �j�1f� expð�q’hÞ þ � þ � expðq’hÞg,
Equation (22) becomes:

&2 þ 2	& þ 1 ¼ 0 ð23Þ

where

	 ¼ ð�k2d� � k2Þ expð�q
Þþð�k2d� þ 2 k2Þþð�k2d� � k2Þ expðq
Þ
2ð� expð�q
Þ þ � þ � expðq
ÞÞ � 1; and 
 ¼ ’h

or
	 ¼ 2ð�k2d� � k2Þ cos 
þ ð�k2d� þ 2 k2Þ

2ð2� cos 
þ �Þ � 1 ð24Þ

Equation (23) is a quadratic in � and hence will have two roots, that is
�� ¼ �	�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 1

p
. For stability, we must have j��j � 1. Also from Equation (23) we

can observe that the product of the two values of � is clearly unity. So three cases arise.
Case 1: Both the roots are equal to unity. In that case the discriminant of the

quadratic equation (23) is zero.
Case 2: One of the roots is greater than unity. In that case the discriminant is greater

than zero. This means that stability condition, that is j��j � 1, is not satisfied. In other
words, �j would grow in an unbounded manner.

Case 3: Discriminant is less than zero, that is: 	2 � 1 < 0:
Thus, for stability:

�1 � 	 � 1 ð25Þ

Using Equation (24), the above inequality becomes:

� k2d�

2
� k2ð1� cos 
Þ
ð� þ 2� cos 
Þ � 2� k2d�

2

� k2d�

2
� 2 k2 sin2ð
=2Þ
ð� þ 2�Þ � 4� sin2ð
=2Þ

� 2� k2d�

2
ð26Þ
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Two cases will be discussed:
Case 1: For � ¼ �2�, inequality (26) becomes:

� k2d�

2
� k2

�2�
� 2� k2d�

2
ð27Þ

The right inequality in (27) which can be written in the form:

k2

�2�
� 2� k2d�

2
ð28Þ

is satisfied for � < 0; k2 << j�j; and k2 small enough to make:

2� k2d�

2

� �
! 2 and 0 <

k2

�2�
<< 1

but the left inequality, that is ð�d�=2Þ � ð1=�2�Þ, is valid for j�j small enough and
� < 0 to make ð1=�2�Þ > 0. Finally, we can say that our system is stable for
� ¼ �2�; � < 0; and k2 << j�j such that j�j; and k2 are small enough.

Case 2: For � > 0; � > 2�, the quantity ð� þ 2�Þ � 4� sin2ð
=2Þ is positive, so the
right inequality in (26) which can be written in the form:

2 k2 sin2ð
=2Þ � 2� k2d�

2

� �
ð� þ 2�� 4� sin2ð
=2ÞÞ ð29Þ

is satisfied for � > 0; � > 0; � >> 2�; and k2 << � small enough to make
2� ðk2d�=2Þ
� �

! 2 and 2 k2 sin2ð
=2Þ ! 0, but the left inequality, that is:

�d� � 4 sin2ð
=2Þ
ð� þ 2�Þ � 4� sin2ð
=2Þ

ð30Þ

is valid for � > 0; � > 0; and � > 2� such that �; and � are small enough and sin
ð
=2Þ 6¼ 0. Finally, we can say that stability in this case requires � > 0;
� > 0; and � > 2� such that �; � and k2 << � are small enough and sinð
=2Þ 6¼ 0.

4. Numerical results
We now obtain the numerical solution of dissipative wave equation for one standard
problem. The accuracy of our proposed numerical method is measured by computing
the difference between the analytic and numerical solutions at each mesh point and use
these to compute the maximum absolute error, L1 � error norm.

Example. Consider the dissipative wave equation (Adomian, 1994):

@2u

@t2
� @

2u

@x2
þ 2utu ¼ �2 sin2 x sin t cos t 0 � x � �; t � 0 ð31Þ

with the initial conditions:

uðx; 0Þ ¼ sin x utðx; 0Þ ¼ 0; ð32Þ

and the boundary conditions:

uð0; tÞ ¼ uð�; tÞ ¼ 0; ð33Þ
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The exact solution of this problem is:

uðx; tÞ ¼ sin x cos t ð34Þ

From the obtained numerical results in Tables I-V, we can conclude that applying non-
polynomial splines in the solution of partial differential equations is a promising
approach

Table III.

Time 0.500 1.500 2.500 3.000
L1 � error 4.90515 	 10–5 2.75733 	 10–4 6.19493 	 10–4 7.59812 	 10–4

Notes: h ¼ �=40; k ¼ 0:0025; � ¼ 2	 10�7; � ¼ 6:18	 10�3

Table II.

Time 0.500 1.500 2.500 3.000
L1 � error 2.52751 	 10–4 1.73065 	 10–3 4.31818 	 10–3 4.9997 	 10–3

Notes: h ¼ �=40; k ¼ 0:01; � ¼ 10�5; � ¼ 6:21	 10�3

Table I.

Time 0.500 1.500 2.500 3.000
L1 � error 2.55058 	 10–4 1.76001 	 10–3 3.21326 	 10–3 4.25842 	 10–3

Notes: h¼ �/40; k¼ 0.01; � ¼ �1.01; � ¼ �2�

Table IV.

x Exact solution Numerical solution

0:2� 0.04157828392871431 0.041764024258423134
0:3� 0.05722759828369953 0.057475017088467340
0:4� 0.06727507659055325 0.067547692975227380
0:5� 0.07073720166770290 0.071012934346015150
0:6� 0.06727507659055325 0.067547692975153300
0:7� 0.05722759828369953 0.057475017088395690
0:8� 0.04157828392871431 0.041764024258327160

Notes: h ¼ �=40; t ¼ 1:5; � ¼ 2	 10�7; � ¼ 6:18	 10�3

Table V.

x Exact solution Numerical solution

0:2� �0.47090040218675855 �0.47064203333751690
0:3� �0.64813879991245870 �0.64771280914059780
0:4� �0.76193285605417060 �0.76136720198110770
0:5� �0.80114361554693370 �0.80052412271783310
0:6� �0.76193285605417060 �0.76136720198119200
0:7� �0.64813879991245870 �0.64771280914063270
0:8� �0.47090040218675855 �0.47064203333747706

Notes: h ¼ �=40; t ¼ 2:5; � ¼ 2	 10�7; � ¼ 6:18	 10�3
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5. Conclusion
In this paper a numerical treatment for a dissipative wave equation using non-
polynomial spline is proposed. Applying the Von Neumann stability analysis, the
developed method is shown to be conditionally stable for given values of specified
parameters. The obtained numerical results show that our proposed method maintains
good accuracy.
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